Toole Design Group

- Engineers
- Planners
- Landscape Architects
Schedule

Monday 5:30 to 7:30 p.m. Introduction & Input

Wednesday 4:00 to 7:00 p.m. Open Studio (Informal)

Thursday 5:30 to 7:00 p.m. Starter Ideas & Feedback

End of April Draft Documents
End of May 2nd Charrette – 3days long
End of July Final Documents
Purpose of the Plan

- Align the Transportation System with the vision of the Comprehensive Plan

Transportation

- Fortify Community & Economic Vibrancy
- Sust. & Celebrate Art & Education
- Resilient & Environmental Responsible Community
- Nurture Vibrant Town Center
- Enhance Quality of Place
Objective 6 - Transportation

• Reduce Dependence on the Automobile

– Provide a safe, efficient, accessible, and connected system of transportation that emphasizes public transit, walking, and biking to enhance options to reduce our overall dependence on the automobile
Scope

- Elaborate transportation vision and goals
- Analyze existing transportation network
- Identify challenges and opportunities
- Update street classification and cross-section
- Identify bicycle, pedestrian and vehicular projects
- Prioritize projects based on approved parameters
- Update Major Thoroughfare Plan based on Complete Streets principles
Existing Functional Classification and Average Daily Traffic
Bloomington’s Attributes

» Historic Buildings
» Downtown
» Indiana University
» Schools
» Development Interest
» Special Events
» Farmers’ Market
» Good Street Network
» Topography
» Engaged University, City, & Community
» Industrial Parks
» Parks and Trails
» Municipal Airport
» and much more ...
The purpose of cities is to advance efficient and effective exchange.

The "transportation purpose" of cities is to minimize long-distance travel.

The "land use purpose" of cities is to concentrate the components for civic life.

Efficient: minimal use of resources (land, energy, time ...
Mobility (in the past)

the movement of people & goods

assumption: faster, farther, and in greater numbers means progress for society
Mobility (now and in the future)
The populations’ capabilities and strategies to move in order to access what it needs to live within the city.
Mobility (now and in the future)

The populations’ capabilities and strategies to move in order to access what it needs to live within the city.

Many Populations: young people, elderly, disabled, different income levels, millennials, pedestrians, cyclists, transit users, students...
Mobility (now and in the future)

The populations’ capabilities and strategies to move in order to access what it needs to live within the city. The movement is purposeful:

<table>
<thead>
<tr>
<th>Trip Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>work</td>
<td>18.0</td>
</tr>
<tr>
<td>work-related</td>
<td>2.6</td>
</tr>
<tr>
<td>shopping</td>
<td>20.2</td>
</tr>
<tr>
<td>doctor/dentist</td>
<td>1.5</td>
</tr>
<tr>
<td>family/personal</td>
<td>24.2</td>
</tr>
<tr>
<td>church/school</td>
<td>8.8</td>
</tr>
<tr>
<td>social/recreational</td>
<td>24.5</td>
</tr>
<tr>
<td>other</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Hello? Mixed land use and density reduce my average weekend trip length by about 85%.
Walkable Environments:
1) Comfortable
2) Engaging
3) Accessible
Walkable Environments:
1) Comfortable
2) Engaging
3) Accessible

Cities:
4) Convenient
5) Connected
Walkable Environments:
1) Comfortable
2) Engaging
3) Accessible

Cities:
4) Convenient
5) Connected

Downtown/Main Street:
6) Vibrant

Ideally:
7) Safe
8) Legible
30mph
33 - 45 - 78 feet to stop

50mph
55 - 131 - 186 feet to stop

70mph
77 - 295 - 372 feet to stop
Hit by a vehicle traveling at 20 MPH, 9 out of 10 pedestrians survive.

Hit by a vehicle traveling at 30 MPH, 5 out of 10 pedestrians survive.

Hit by a vehicle traveling at 40 MPH, only 1 out of 10 pedestrians survives.
Connected Street Networks
Traditional City
Value = fn (proximity to center)
Conception of Access & Mobility

Volume

Access

Mobility

Local
Collector
Arterial
Modern Conception of the Purpose of Streets

- **Access**
- **Mobility**

Types:
- Local
- Collector
- Arterial
Conventional Theory
Value = fn (travel time to center)

Traditional City
Value = fn (proximity to center)
Process

Existing Conditions + Land Use + Bicycle and Pedestrian Plan Recommendations =
Street Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example Street Segments</th>
</tr>
</thead>
</table>
| Mixed Use A | 4 or more travel lanes
 Sidewalks on both sides
 Green median
 Left turn lanes
 Dedicated bicycle facility
 Primarily commercial or mixed use land uses | Preston Ave
 Grady Ave to McIntire Rd
 5th St SW
 City Limits to Harris Rd
 Emmet St
 Massie Rd to City Limits
 Ridge - McIntire Rd
 W Main St to Preston Ave | ![Example Image](image1.jpg) |
| Mixed Use B | 2 travel lanes
 Sidewalks on both sides
 Dedicated bicycle facility
 May have on-street parking
 Primarily mixed use or higher density residential land uses | Ridge St
 Harris Rd to Monticello Ave
 McIntire Rd
 Preston Ave to 250 Bypass
 Emmet St S
 Ivy Rd to Stadium Rd
 W Main St
 University Ave to Ridge St | ![Example Image](image2.jpg) |
Street Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example Street Segments</th>
</tr>
</thead>
</table>
| Downtown| 2 travel lanes
Sidewalks on both sides
Some center turn lanes
On-street parking
Commercial and mixed use land uses | ![Downtown Street](image1.png) |
| Industrial| 2 travel lanes
Sidewalks on both sides
Primarily commercial land uses | ![Industrial Street](image2.png) |
Street Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example Street Segments</th>
</tr>
</thead>
</table>
| **Neighborhood A** | 2 travel lanes
1 or more sidewalks
Dedicated bicycle facility
Some on-street parking
Primarily low to medium density residential land uses | ![Street Types](image1.png) |
| **Neighborhood B** | 2 travel lanes
1 or fewer sidewalks
Some on-street parking
Primarily low density residential land uses | ![Street Types](image2.png) |
Cross sections

Design guidelines do not replace the design process for individual streets/projects.

Decisions will not necessarily have an outcome that 100% match what is shown in these cross sections.
Mixed Use A - Existing
Mixed Use A - Retrofit
Mixed Use A - Unconstrained
Implementation

1. Departmental Responsibilities
2. Project Types
3. Development Review Process
4. Priority Projects
5. Pilot Projects
Prioritization Process

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash locations – All modes</td>
<td>25</td>
</tr>
<tr>
<td>Public input – See Appendix B</td>
<td>22</td>
</tr>
<tr>
<td>Top 20 Bicycle Facility Recommendations</td>
<td>15</td>
</tr>
<tr>
<td>Top 19 Sidewalk Project Recommendations</td>
<td>15</td>
</tr>
<tr>
<td>Bicycle/Pedestrian Demand</td>
<td>15</td>
</tr>
<tr>
<td>Transit Stops</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Priority Projects

- 10 Corridors
- 10 Intersections
4
=4
=6
=13
=12
Developer Coordination
Stakeholders
Competing Priorities
Litmus Test for Sustainable Change

Does the “change” reward the short trip and/or the transit trip?

Change: change in policy, street design, land use, operations, transit initiative, etc.
What to plan, decide, fund...?
http://wikimapping.com.wikimap/Bloomington-Transportation-Plan.html
1) What do you **like** & wish to preserve?
2) What do you **dislike** & want to change?
3) What is **missing** that you like to see created?